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This study aimed to investigate the effect of dietary supplementation with xylanase and

probiotics on growth performance and intestinal health of nursery pigs challenged with

enterotoxigenic Escherichia coli (ETEC). Sixty-four newly weaned pigs (32 barrows and

32 gilts with 7.9 ± 0.4 kg BW) were allotted in a randomized complete block design (2 ×

2 factorial). Two factors were ETEC challenge (oral inoculation of saline solution or E. coli

F18+ at 6 × 109 CFU) and synbiotics (none or a combination of xylanase 10,000 XU/kg

and Bacillus sp. 2 × 108 CFU/kg). All pigs were fed experimental diets following NRC

(2012) in two phases (P1 for 10 d and P2 for 11 d). The ETEC was orally inoculated on d 7

after weaning. Feed intake and BWwere measured on d 7, 10, 15, and 20. On d 20, pigs

were euthanized to collect samples to measure gut health parameters and microbiome.

Synbiotics increased (P < 0.05) ADG in phase 1 and ETEC reduced (P < 0.05) ADG

and G:F in the post-challenge period. ETEC increased (P < 0.05) the fecal score of pigs

from d 7 to 13; however, synbiotics reduced (P < 0.05) it at d 9 and 11 in challenged

pigs. ETEC increased (P < 0.05) mucosal MDA, IL-6, Ki-67+, and crypt depth, whereas

synbiotics tended to reduce TNFα (P = 0.093), protein carbonyl (P = 0.065), and IL-6

(P = 0.064); reduced (P < 0.05) crypt depth and Ki-67+; and increased (P < 0.05) villus

height. ETEC reduced (P < 0.05) the relative abundance of Bacteroidetes and Firmicutes

and increased (P < 0.05) the relative abundance of Proteobacteria. In conclusion, ETEC

challenge reduced growth performance by affecting microbiome, immune response, and

oxidative stress in the jejunum. Synbiotics enhanced growth performance by reducing

diarrhea, immune response, and oxidative stress in the jejunum.

Keywords: Escherichia coli, growth performance, intestinal health, newly weaned pigs, probiotics, synbiotics,

xylanase

INTRODUCTION

Weaning is a challenging period for nursery pigs especially with their immune and intestinal
functions resulting in reduced growth performance (1). During this period, pigs experience
environmental, immunological, psychological, and nutritional challenges (2–4). Consequently,
pigs at weaning are highly susceptible to pathogenic microorganism, such as enterotoxigenic
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FIGURE 1 | Fecal score of pigs challenged with ETEC (CH) on d 7 post-weaning and fed diets supplemented with a synbiotic (SY). * d 7 pm: CH: (P < 0.001), SY: (P

= 0.685), CH × SY: (0.892); d 9: CH: (P < 0.001), SY: (P = 0.124), CH × SY: (P < 0.05); d 11: CH: (P < 0.001), SY: (P = 0.236), CH × SY: (P < 0.05); d 13: CH: (P <

0.05), SY: (P = 0.718), CH × SY: (P = 0.471). a,b Within a column, means without a common superscript letter differ (P < 0.05).

TABLE 4 | Oxidative stress and immune parameters in the jejunal mucosa of pigs challenged with ETEC (CH) on d 7 post-weaning and fed diets supplemented with a

synbiotic (SY).

Challenged synbiotic –1 +
1 SEM P-value

–2 +
2 –2 +

2 CH SY CH × SY

MDA, µmol/mg of protein 0.24 0.28 0.88 0.76 0.10 <0.001 0.713 0.412

Protein carbonyl, nmol/mg of protein 3.02 2.41 3.24 2.60 0.38 0.529 0.065 0.957

TNFα, pg/mg of protein 0.97 0.86 1.13 0.89 0.11 0.439 0.093 0.645

IL-8, ng/mg of protein 0.49 0.52 0.51 0.53 0.05 0.825 0.546 0.924

IL-6, pg/mg of protein 3.16 2.76 4.98 3.62 0.46 0.006 0.064 0.306

1ETEC challenge.
2Synbiotic.

the genus level (Table 7), the ETEC challenge reduced (P <

0.05) the relative abundance of Megasphaera, Mitsuokella, and
Selenomonas and tended to reduce (P = 0.060) the relative
abundance of Helicobacter, whereas the use of synbiotics did
not affect the jejunal mucosa-associated microbiota at the
genus level. At the species level (Table 8), the ETEC challenge
reduced (P < 0.05) the relative abundance of Acidaminococcus

fermentans, Selenomonas bovis, and Selenomonas lipolytica and
tended to decrease the relative abundance of Prevotella copri
(P = 0.096) and Roseburia faecis (P = 0.079). Pigs fed
synbiotics increased (P < 0.05) the relative abundance of
Helicobacter_mastomyrinus in unchallenged pigs compared with
the control group. Pigs challenged with ETEC and fed a diet
with synbiotics increased (P < 0.05) the relative abundance of
Campylobacter coli compared with pigs fed synbiotics and not
challenged. Pigs challenged with ETEC and fed a diet with a
synbiotic tended to increase (P= 0.075) the relative abundance of

Campylobacter hyointestinalis compared with pigs fed synbiotics
and not challenged.

There was no effect of the factors on alpha diversity of jejunal
mucosa-associated microbiota in pigs estimated with Chao1
richness estimator at the family (Figure 3A) and genus levels
(Figure 4A). At the family level, the Shannon diversity index was
not affected by the factors (Figure 3B), whereas at the genus level,
it tended to be reduced by the ETEC challenge (P = 0.089) and
the synbiotic (P= 0.066), regardless of the challenge (Figure 4B).
The Simpson diversity index was not affected by the ETEC
challenge, whereas it was reduced (P < 0.05) by the synbiotic at
the family (Figure 3C) and genus levels (Figure 4C).

DISCUSSION

In this study, pigs were housed individually in order to know
the intake of synbiotics affecting intestinal health following
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TABLE 5 | Jejunal histomorphology and digesta viscosity of pigs challenged with ETEC (CH) on d 7 post-weaning and fed diets supplemented with a synbiotic (SY).

Challenged synbiotic –1 +
1 SEM P-value

–2 +
2 –2 +

2 CH SY CH × SY

Villus height, µm 405.3 434.1 331.6 408.6 25.5 0.005 0.003 0.153

Villus width, µm 99.7 90.6 95.4 91.4 4.7 0.698 0.153 0.569

Crypt depth, µm 273.6 246.5 306.2 273.9 10.7 0.002 0.003 0.782

VH:CD ratio3 1.50 1.80 1.11 1.52 0.09 0.001 0.001 0.534

Ki-67 positive, %4 29.95 28.25 35.46 32.34 1.21 0.001 0.053 0.559

Viscosity, mPa·s 1.92 1.90 1.88 1.76 0.07 0.193 0.354 0.465

1ETEC challenge.
2Synbiotic.
3Villus height to crypt depth ratio.
4The ratio of Ki-67 positive cells to total cells in the crypt.

FIGURE 2 | Relative abundance of jejunal mucosa-associated microbiota at the phylum level in pigs challenged with ETEC (CH) on d 7 post-weaning and fed diets

supplemented with a synbiotic (SY). Each pattern represents a particular bacterial phylum. Phylum sequences that did not achieve 0.5% within each phylum were

combined as “Others.” 1: ETEC challenge (CH); 2: Synbiotic (SY). Proteobacteria: CH: (P < 0.05), SY: (P = 0.339), CH × SY: (P = 0.668). Bacteroidetes: CH: (P <

0.05), SY: (P = 0.162), CH × SY: (P = 0.542); Firmicutes: CH: (P < 0.05), SY: (P = 0.523), CH × SY: (P = 0.803).

procedures previous described (26, 31, 32). The beneficial effects
of the synbiotic shown in this study were prominent especially
during the period immediately after the weaning when pigs
receive the greatest nutritional challenges from plant-based diets,
whereas the synbiotic seems to be efficient in enhancing the
jejunal histomorphology and reducing the fecal score and the
microbial diversity without affecting the growth performance
during P2 of this study. Probiotics and prebiotics are shown to
be effective to newly weaned pigs because of the immaturity of
the intestine and limited digestive capacity of plant-based diets
(10, 33). As pigs adapt to plant-based diets, however, pigs develop
the intestine to handle fiber and utilize dietary nutrients more
efficiently (34–36).

This study confirmed that E. coli F18+ can be associated with
post-weaning diarrhea (PWD), reducing the growth, modulating
the microbiome, and affecting the gut heath of newly weaned
pigs as previously reported (5, 25, 37). Enterotoxins (including

STa, and STb) from ETEC are a major cause of increased
fecal score as shown in this study. The fimbria of the E.
coli bind to glycoproteins in the microvilli of the intestine of
newly weaned pigs by a fimbria receptor interaction causing an
interference in the electrolytes fluid that leads to diarrhea by
enterotoxin interaction (5, 38–40). The predisposition of newly
weaned pigs to PWD caused by ETEC have been related to
the psychological, environmental, and physiological stress after
weaning, as well as sudden transition from sow’s milk to plant-
based diets that are solid and less digestible. These stressors
disrupt the immune system and the intestinal microbiota leading
to intestinal inflammation and PWD (41, 42), consequently
reducing growth performance (5, 6, 17). As previously reported
(31, 43), the challenge with E. coli F18+ in this study reduced
growth and feed efficiency without affecting feed intake, which
is in agreement with previous studies. Reduced feed efficiency
in pigs with E. coli infection is related to impaired nutrient

Frontiers in Veterinary Science | www.frontiersin.org 7 September 2020 | Volume 7 | Article 573

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Duarte et al. Synbiotics for Nursery Pigs

TABLE 6 | Relative abundance of jejunal mucosa-associated microbiota at the family level in pigs challenged with ETEC (CH) on d 7 post-weaning and fed diets

supplemented with a synbiotic (SY).

Challenged synbiotic –1 +
1 SEM P-value

–2 +
2 –2 +

2 CH SY CH × SY

Helicobacteraceae 30.13 38.9 43.55 55.41 14.35 0.063 0.196 0.845

Prevotellaceae 42.16 33.89 32.48 21.88 11.52 0.069 0.111 0.841

Lactobacillaceae 4.32 6.70 4.81 5.35 2.07 0.836 0.485 0.661

Veillonellaceae 8.07 6.15 3.19 2.84 1.34 0.003 0.380 0.545

Corynebacteriaceae 2.16 2.24 4.43 4.07 2.01 0.313 0.945 0.913

Campylobacteraceae 2.42 1.46 1.66 1.22 0.69 0.461 0.302 0.698

Lachnospiraceae 1.40 1.60 0.96 1.45 0.40 0.418 0.348 0.695

Succinivibrionaceae 0.77 0.28 1.88 1.24 0.96 0.159 0.444 0.920

Clostridiaceae 1.38 0.82 0.51 0.58 0.30 0.067 0.412 0.294

Ruminococcaceae 0.94 0.95 0.56 0.66 0.33 0.192 0.830 0.859

Eubacteriaceae 0.74 0.78 0.70 0.88 0.33 0.856 0.559 0.705

Porphyromonadaceae 0.74 0.76 0.52 0.67 0.24 0.417 0.665 0.735

Enterobacteriaceae 0.27 1.13 0.32 0.52 0.45 0.522 0.229 0.449

Bacillaceae 0.04 0.13 0.05 0.04 0.05 0.420 0.419 0.357

Others 4.47 4.27 4.38 4.35 1.12 0.999 0.904 0.928

1ETEC challenge.
2Synbiotic.

TABLE 7 | Relative abundance of jejunal mucosa-associated microbiota at the genus level in pigs challenged with ETEC (CH) on d 7 post-weaning and fed diets

supplemented with a synbiotic (SY).

Challenged synbiotic –1 +
1 SEM P-value

–2 +
2 –2 +

2 CH SY CH × SY

Helicobacter 33.34 42.25 49.15 57.52 13.68 0.060 0.289 0.973

Prevotella 42.42 34.70 31.01 24.16 12.05 0.117 0.294 0.949

Lactobacillus 5.77 8.02 5.60 6.04 2.66 0.688 0.616 0.735

Corynebacterium 2.79 2.79 4.89 4.42 2.18 0.398 0.915 0.913

Campylobacter 3.16 1.80 1.96 1.49 0.86 0.367 0.275 0.591

Mitsuokella 2.60 1.19 0.83 0.66 0.68 0.041 0.153 0.27

Selenomonas 1.87 2.39 0.55 0.24 0.52 <0.001 0.818 0.377

Succinivibrio 0.85 0.22 1.72 1.22 0.93 0.208 0.446 0.928

Megasphaera 1.09 0.83 0.35 0.24 0.21 0.002 0.366 0.713

Others 5.30 4.99 3.46 3.82 0.96 0.124 0.975 0.727

1ETEC challenge.
2Synbiotic.

absorption (43, 44) and the activation of immune system
partitioning nutrients from growth (45).

McLamb et al. (24) previously reported that pigs challenged
with ETEC have the immune response activated. According
to Loos et al. (46), the secretion of IL-6 in the lumen of the
small intestine is stimulated by STa produced by E. coli F18+.
In this study, the ETEC challenge increased the concentration
of IL-6 as previous reported (46, 47). High levels of IL-6
reduce the secretion of growth hormone (48) and damage
the intestinal epithelium (49, 50). The challenge, however, did
not affect the concentration of IL-8 and TNFα in this study.
According to Loos et al. (51), the IL-8 has low expression in

response to ETEC. The activation of the immune system in
response to the ETEC infection may lead to an exhaustion of
the antioxidant mechanism causing the oxidation of cellular
protein, lipids, and DNA (52). The results of this study show,
on challenged pigs, an increasing level of MDA, a final product
of the lipid oxidation, and an indicator of oxidative stress
(53, 54). The metabolites from oxidative stress can directly
affect the enterocytes’ cell wall components, such as lipids
and proteins, causing apoptosis and, consequently, reduction
of villi length (54, 55). The villi reduction in the challenged
pigs leads to increasing the crypt cell proliferation rate, and
consequently, increasing the crypt depth which is in accordance
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TABLE 8 | Relative abundance of jejunal mucosa-associated microbiota at the species level in pigs challenged (CH) with ETEC on d 7 post-weaning and fed diets

supplemented with synbiotics (SY).

Challenged synbiotic –1 +
1 SEM P-value

–2 +
2 –2 +

2 CH SY CH × SY

Prevotella copri 39.80 30.59 29.55 20.72 7.94 0.096 0.135 0.974

Helicobacter rappini 16.12 23.06 26.76 27.82 6.97 0.228 0.529 0.643

Helicobacter mastomyrinus 4.12b 13.80a 10.00ab 8.05ab 3.47 0.983 0.193 0.053

Prevotella stercorea 7.39 7.65 6.13 8.42 3.65 0.913 0.561 0.642

Corynebacterium glutamicum 3.61 2.22 4.08 4.60 2.11 0.504 0.838 0.653

Helicobacter equorum 0.07 0.45 2.54 10.07 4.40 0.107 0.287 0.336

Lactobacillus mucosae 2.44 4.18 0.99 2.52 1.51 0.309 0.285 0.942

Prevotella sp. 2.30 1.85 3.59 1.97 1.95 0.648 0.507 0.703

Corynebacterium deserti 2.11 1.17 2.26 2.20 1.15 0.611 0.662 0.705

Lactobacillus kitasatonis 1.18 1.05 1.70 1.85 0.72 0.363 0.984 0.843

Campylobacter upsaliensis 2.31 0.87 1.45 0.33 1.05 0.506 0.230 0.883

Mitsuokella jalaludinii 1.47 0.81 0.86 0.69 0.53 0.360 0.297 0.548

Lactobacillus delbrueckii 1.12 1.01 0.40 0.68 0.43 0.225 0.838 0.653

Selenomonas bovis 1.08 1.50 0.33 0.24 0.29 0.001 0.582 0.384

Dialister succinatiphilus 0.93 0.79 0.63 0.48 0.30 0.247 0.593 0.989

Roseburia faecis 0.90 0.83 0.47 0.54 0.24 0.079 0.986 0.724

Lactobacillus sp. 0.86 0.66 0.35 0.67 0.31 0.430 0.837 0.398

Helicobacter canadensis 1.00 0.13 0.30 1.08 0.70 0.842 0.943 0.202

Prevotella ruminicola 0.64 0.18 1.03 0.27 0.52 0.673 0.296 0.799

Selenomonas lipolytica 0.74 1.00 0.20 0.15 0.22 0.004 0.650 0.491

Mitsuokella multacida 1.12 0.29 0.30 0.37 0.48 0.378 0.361 0.280

Faecalibacterium prausnitzii 0.65 0.62 0.26 0.47 0.16 0.113 0.612 0.464

Succinivibrio dextrinosolvens 0.63 0.25 0.88 0.24 0.48 0.782 0.250 0.774

Campylobacter coli 0.57AB 0.19B 0.28AB 0.63A 0.17 0.637 0.960 0.031

Phascolarctobacterium succinatutens 0.22 0.32 0.27 0.67 0.27 0.243 0.148 0.394

Acidaminococcus fermentans 0.50 0.37 0.16 0.20 0.10 0.036 0.712 0.436

Campylobacter lanienae 0.34 0.15 0.23 0.40 0.11 0.507 0.909 0.113

Lactobacillus amylovorus 0.09 0.17 0.59 0.23 0.21 0.200 0.523 0.319

Campylobacter hyointestinalis 0.30A 0.14B 0.19AB 0.27AB 0.07 0.932 0.568 0.055

Pelomonas puraquae 0.10 0.21 0.16 0.31 0.09 0.375 0.160 0.804

Others 4.25 3.76 3.19 3.27 0.73 0.290 0.782 0.699

1ETEC challenge.
2Synbiotic.
a,bWithin a row, means without a common superscript letter differ (P < 0.05).
A,BWithin a row, means without a common superscript letter differ (P < 0.10).

with previous studies (3, 43, 56). The increased oxidative stress
due to the activated immune system may also redirect energy
and nutrients from growth to immune response, and to repair
the epithelium.

The use of synbiotics, however, was effective to reduce the
jejunal mucosal levels of IL-6, TNFα, and protein carbonyl
regardless of the ETEC challenge. The reduction of the immune
and oxidative stress indicators reduces the epithelial damage and
the cell proliferation rate by reducing the deleterious effect of
the ETEC on nursery pigs (43, 57–59). These results showed
a potential benefit of dietary xylanase and Bacillus sp. as a
synbiotic on enhancing the gut health and further reducing the
jejunal mucosal protein carbonyl concentration. Therefore, this
study targeted the investigation of the combinational effects of

xylanase and Bacillus sp. The synbiotic had beneficial outcomes
because xylanase successfully hydrolyzed xylans to XOS in feeds
(10, 31, 60, 61), reducing the viscosity of digesta (10, 19)
releasing nutrients for digestion (14, 18). Passos et al. (14)
reported that dietary supplementation with xylanase showed a
linear increase in the ileal digestibility of NDF, indicating the
hydrolysis of NSP-releasing oligosaccharides, such as XOS. In
addition, Bacillus sp. effectively utilizes XOS released by xylanase
hydrolysis, further exerting synergetic effects (20) including their
antibacterial properties (43, 62, 63).

The synbiotic can selectively affect the growth of
microorganisms in the intestine, including those directly
added in the diet (64, 65), targeting some metabolic processes
and possibly changing the physical-chemical properties of
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FIGURE 3 | Alpha diversity of jejunal mucosa-associated microbiota at the family level estimated with Chao1 richness (A), Shannon diversity (B), and Simpson

diversity (C) in pigs challenged (CH) with ETEC on d 7 post-weaned and fed diets supplemented with a synbiotic (SY). 1: ETEC challenge; 2: Synbiotic; SY: synbiotic;

CH: challenge; CH × SY: Challenge and synbiotic.

FIGURE 4 | Alpha diversity of jejunal mucosa-associated microbiota at the genus level estimated with Chao1 richness (A), Shannon diversity (B), and Simpson

diversity (C) in pigs challenged (CH) with ETEC on d 7 post-weaned and fed diets supplemented with a synbiotic (SY). 1: ETEC challenge; 2: Synbiotic; SY: synbiotic;

CH: challenge; CH × SY: Challenge and synbiotics.

the digesta (66). This mechanism can promote gut health
benefits, such as modulation of gut microbiota by competition
and antimicrobial property (67), and consequently, affect the
immune system, reduce the oxidative stress, and increase the
growth performance of newly weaned pigs (31).

Pigs from the challenge group-fed diets with the synbiotic
had reduced diarrhea occurrence earlier than those without
synbiotic supplementation. This outcome shows that the

dietary supplementation of synbiotics may prevent ETEC from
damaging the intestinal epithelium. Although the jejunal digesta
viscosity was not affected by either factors in this study, the
viscosity can be affected by the ingredient in the diet (19, 31) and
the ratio of insoluble to soluble NSP (68). The viscosity observed
in this study ranged from 1.8 to 1.9 mPa·s, which is lower than
previously reported by Duarte et al. (10) and Passos et al. (14)
due to differences in dietary compositions.
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The ETEC slightly reduced the microbial diversity index but
caused an imbalance in jejunal mucosa-associated microbiota by
increasing the relative abundance of Proteobacteria by increasing
the family Helicobacteraceae and the genus Helicobacter,
consequently reducing the relative abundance of Bacteroidetes
and Firmicutes, Prevotellaceae, andMitsukella and Selenomonas,
as previously reported by Bin et al. (69) and Pollock et al. (70).
The adherence of the ETEC and the production of enterotoxins
with the subsequent secretion of fluid to the intestinal lumen
(41, 51) create a propitious environment to the growth of
proteobacteria (17). The high abundance of Helicobacteraceae
which belong to the Proteobacteria has been reported to cause a
reduction of the mucous layer protection (65), which explains the
impact of the challenge on the villus height, immune response,
and the oxidative stress status, whereas, Prevotellaceae, which
belongs to the Bacteroidetes has been related to intestinal mucosa
of healthy pigs fed plant-based diets (71, 72).

The synbiotic reduced the diversity of themicrobiomewithout
affecting the relative abundance of microbials. Bacillus spores,
Lactobacillus acidophilus and Pediococcus acidilactici used as
probiotics has been reported to reduce the microbial diversity in
pigs (33, 73). According to Poulsen et al. (33), Bacillus spores
are able to adhere to intestinal epithelium and competitively
affect the colonization pattern. Reduction on mucosa-associated
microbial diversity have been related to increased inflammatory
response (74), even though this was not observed in this
study. These results may suggest that the type of the dominant
microbials in the jejunal mucosa is more important to affect
the intestinal immune response than the microbial diversity.
According to Wang et al. (73), the ability of probiotics to reduce
the diversity or richness of microbiome can positively affect
the growth performance by reducing the deleterious effects of
harmful microbes that can affect the immune system, oxidative
stress, and intestinal histomorphology. It was confirmed in
this study that the synbiotic supplementation increased growth
performance, and villus height, reducing diarrhea, immune
response, and oxidative stress in nursery pigs.

In conclusion, the ETEC challenge reduced the growth
performance of newly weaned pigs by increasing the relative
abundance of harmful bacteria, intestinal immune response,

intestinal oxidative stress, and crypt depth while reducing the
villus height in the small intestine. Dietary supplementation
of xylanase and Bacillus sp. as a synbiotic enhanced growth
performance by increasing the relative abundance of beneficial
bacteria in the small intestine, reducing diarrhea, reducing
the oxidative stress, and increasing the villus height in the
small intestine regardless of the challenge. The synbiotic
showed potential benefits on growth performance, reducing
diarrhea, immune response, and the oxidative stress status
in the small intestine, leading to a protective function on
the intestinal epithelium. Therefore, it was demonstrated that
the E. coli F18+ greatly affects the gut health and growth
performance of pigs, whereas the novel synbiotic showed a
potential to mitigate the effects of E. coli F18+ infection in an
AGP-free diet.
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